IOT

Internet of Things

What is IoT??

The Internet of Things (IoT) is the network of physical objects or “things” embedded with electronics, software, sensors, and network connectivity, which enables these objects to collect and exchange data. The Internet of Things allows objects to be sensed and controlled remotely across existing network infrastructure, creating opportunities for more direct integration between the physical world and computer-based systems, and resulting in improved efficiency, accuracy and economic benefit. Each thing is uniquely identifiable through its embedded computing system but is able to interoperate within the existing Internet infrastructure. Experts estimate that the IoT will consist of almost 50 billion objects by 2020.
British entrepreneur Kevin Ashton first coined the term in 1999 while working at the Auto-ID Labs. IoT is expected to offer advanced connectivity of devices, systems, and services that goes beyond machine-to-machine communications (M2M)and covers a variety of protocols, domains, and applications. The interconnection of these embedded devices (including smart objects), is expected to usher in automation in nearly all fields, while also enabling advanced applications like a Smart Grid and expanding to the areas such as smart cities.
Besides the plethora of new application areas for Internet connected automation to expand into, IoT is also expected to generate large amounts of data from diverse locations that is aggregated very quickly, thereby increasing the need to better index, store and process such data.

IOT

What do you mean by things in IoT??
“Things,” in the IoT sense, can refer to a wide variety of devices such as heart monitoring implants, biochip transponders on farm animals, electric clams in coastal waters, automobiles with built-in sensors, or field operation devices that assist firefighters in search and rescue operations. These devices collect useful data with the help of various existing technologies and then autonomously flow the data between other devices. Current market examples include smart thermostat systems and washer/dryers that use Wi-Fi for remote monitoring.

Enabling technologies for the IOT:

There are mainly three types of technologies that enable IOT.

  • RFID and near-field communication – In 2000s this was more likely tech. Later on it was modified into many forms. The most likely one among them is the near-field communication (NFC) form. The latest Iphone 6 supports NFC for Apple Pay.
  • Optical tags and quick response codes – This is used for low cost tagging. Phone cameras decodes QR code using image-processing techniques. In reality QR advertisement campaigns gives less turnout as users need to have another application to read QR codes.
  • Bluetooth low energy – This is one of the latest tech. All newly releasing smartphones have BLE hardware in them. Tags based on BLE can signal their presence at a power budget that enables them to operate for up to one year on a lithium coin cell battery.

Applications:

  • Environmental monitoring
    Environmental monitoring applications of the IoT typically use sensors to assist in environmental protection by monitoring air or water quality, atmospheric or soil conditions,[58] and can even include areas like monitoring the movements of wildlife and their habitats. Development of resource constrained devices connected to the Internet also means that other applications like earthquake or tsunami early-warning systems can also be used by emergency services to provide more effective aid. IoT devices in this application typically span a large geographic area and can also be mobile.Smart City
  • Infrastructure management
    Monitoring and controlling operations of urban and rural infrastructures like bridges, railway tracks, on- and offshore- wind-farms is a key application of the IoT. The IoT infrastructure can be used for monitoring any events or changes in structural conditions that can compromise safety and increase risk. It can also be used for scheduling repair and maintenance activities in an efficient manner, by coordinating tasks between different service providers and users of these facilities. IoT devices can also be used to control critical infrastructure like bridges to provide access to ships. Usage of IoT devices for monitoring and operating infrastructure is likely to improve incident management and emergency response coordination, and quality of service, up-times and reduce costs of operation in all infrastructure related areas. Even areas such as waste management stand to benefit from automation and optimization that could be brought in by the IoT.
  • Medical and healthcare systems
    IoT devices can be used to enable remote health monitoring and emergency notification systems. These health monitoring devices can range from blood pressure and heart rate monitors to advanced devices capable of monitoring specialized implants, such as pacemakers or advanced hearing aids. Specialized sensors can also be equipped within living spaces to monitor the health and general well-being of senior citizens, while also ensuring that proper treatment is being administered and assisting people regain lost mobility via therapy as well. Other consumer devices to encourage healthy living, such as, connected scales or wearable heart monitors, are also a possibility with the IoT. More and more end-to-end health monitoring IoT platform are coming up for antenatal and chronic patients, helping one manage health vitals and recurring medication requirements. Distinct advantages over similar products from the US and Europe are cost-effectiveness and personalisation for chronic patients. Doctors can monitor the health of their patients on their smartphones after the patient gets discharged from the hospital.Health

Criticism:

  1.  Security Concerns have been raised that the Internet of Things is being developed rapidly without appropriate consideration of the profound security challenges involved and the regulatory changes that might be necessary. According to the BI (Business Insider) Intelligence Survey conducted in the last quarter of 2014, 39% of the respondents said that security is the biggest concern in adopting Internet of Things technology In particular, as the Internet of Things spreads widely, cyber attacks are likely to become an increasingly physical (rather than simply virtual) threat. In a January 2014 article in Forbes, cyber security columnist Joseph Steinberg listed many Internet-connected appliances that can already “spy on people in their own homes” including televisions, kitchen appliances, cameras, and thermostats. Computer-controlled devices in automobiles such as brakes, engine, locks, hood and truck releases, horn, heat, and dashboard have been shown to be vulnerable to attackers who have access to the onboard network. In some cases, vehicle computer systems are internet-connected, allowing them to be exploited remotely. The U.S. National Intelligence Council in an unclassified report maintains that it would be hard to deny “access to networks of sensors and remotely-controlled objects by enemies of the United States, criminals, and mischief makers… An open market for aggregated sensor data could serve the interests of commerce and security no less than it helps criminals and spies identify vulnerable targets. Thus, massively parallel sensor fusion may undermine social cohesion, if it proves to be fundamentally incompatible with Fourth-Amendment guarantees against unreasonable search.” In general, the intelligence community views Internet of Things as a rich source of data.
  2. Children and the Internet of Things It has been said that young people are the target of a range of policy initiatives designed to realise the benefits of new developments in the internet while minimising the potential risks. These are often developed, of necessity, in the absence of rigorous empirical data, making an informed assessment of access, attitudes, skills and uses essential. The key ideas that reveal the complex dynamic between online opportunities and online risks include:
  • Digital in/exclusion
  • Learning and literacy
  • Peer networking and privacy
  • Civic participation
  • Risk and harm

This research raises key questions regarding identity, literacy, privacy, participation and risk which are all key issues in relation to IoT developments.[135] Data capture, or Big Data, is a key starting point whilst considering the effects of the IoT on young people.

References:

  • www.google.com
  • https://en.wikipedia.org/wiki/Internet_of_Things

Article By : Asmita Khaneja